Estimating Carbon Dioxide (CO2) Emissions from Reservoirs Using Artificial Neural Networks
نویسندگان
چکیده
Freshwater reservoirs are considered as the source of atmospheric greenhouse gas (GHG), but more than 96% of global reservoirs have never been monitored. Compared to the difficulty and high cost of field measurements, statistical models are a better choice to simulate the carbon emissions from reservoirs. In this study, two types of Artificial Neural Networks (ANNs), Back Propagation Neural Network (BPNN) and Generalized Regression Neural Network (GRNN), were used to predict carbon dioxide (CO2) flux emissions from reservoirs based on the published data. Input variables, which were latitude, age, the potential net primary productivity, and mean depth, were selected by Spearman correlation analysis, and then the rationality of these inputs was proved by sensitivity analysis. Besides this, a Multiple Non-Linear Regression (MNLR) and a Multiple Linear Regression (MLR) were used for comparison with ANNs. The performance of models was assessed by statistical metrics both in training and testing phases. The results indicated that ANNs gave more accurate results than regression models and GRNN provided the best performance. With the help of this GRNN, the total CO2 emitted by global reservoirs was estimated and possible CO2 flux emissions from a planned reservoir was assessed, which illustrated the potential application of GRNN.
منابع مشابه
Analysis and Modeling of Yield, CO2 Emissions, and Energy for Basil Production in Iran using Artificial Neural Networks
The present study attempts to investigate the potential relationship between input energies, performance production of greenhouse basil, and greenhouse gases emitted from this product. The data were collected from 24 greenhouses using a questionnaire and verbal interaction with farmers. Results of the study showed that the total input energy and total output energy for basil production were 119...
متن کاملPredicting Energy Consumption and CO2 Emissions of Excavators in Earthwork Operations: An Artificial Neural Network Model
Excavators are one of the most energy-intensive elements of earthwork operations. Predicting the energy consumption and CO2 emissions of excavators is therefore critical in order to mitigate the environmental impact of earthwork operations. However, there is a lack of method for estimating such energy consumption and CO2 emissions, especially during the early planning stages of these activities...
متن کاملEstimating greenhouse gas emissions using emission factors from the Sugarcane Development Company, Ahvaz, Iran
Background: Greenhouse gas (GHG) emissions are increasing worldwide. They have harmful effects on human health, animals, and plants and play a major role in global warming and acid rain. Methods: This research investigated carbon dioxide (CO2) and CH4 emissions obtained from different parts of the Hakim Farabi, Dobal Khazaei, and Ramin factories which produce ethanol and yeast. Seasonal rates ...
متن کاملSolubility Prediction of Drugs in Supercritical Carbon Dioxide Using Artificial Neural Network
The descriptors computed by HyperChem® software were employed to represent the solubility of 40 drug molecules in supercritical carbon dioxide using an artificial neural network with the architecture of 15-4-1. The accuracy of the proposed method was evaluated by computing average of absolute error (AE) of calculated and experimental logarithm of solubilities. The AE (±SD) of data sets was 0.4 ...
متن کاملSolubility Prediction of Drugs in Supercritical Carbon Dioxide Using Artificial Neural Network
The descriptors computed by HyperChem® software were employed to represent the solubility of 40 drug molecules in supercritical carbon dioxide using an artificial neural network with the architecture of 15-4-1. The accuracy of the proposed method was evaluated by computing average of absolute error (AE) of calculated and experimental logarithm of solubilities. The AE (±SD) of data sets was 0.4 ...
متن کامل